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ABSTRACT

In this paper we extend Geweke’s approach of Granger
causality by deriving a nonlinear framework based on func-
tional regression in reproducing kernel Hilbert spaces (RKHS).
After giving the definitions of dynamical and instantaneous
causality in the Granger sense, we review Geweke’s mea-
sures. These measures quantify improvement in predicting a
time series when the past of another one is taken into account.
Geweke’s measures are based on linear prediction, and we
present an alternative using nonlinear prediction implemented
using regularized regression in RKHS. We develop the ap-
proach and describe the cross-validation step implemented
to optimize the hyperparameters (kernel and regularization
parameters). We illustrate the approach on two examples.
The first one shows the importance of taking into account
side information and possible nonlinear effects. The second
one is an illustration of the complete inference problem: sur-
rogate data are generated to create the null hypothesis and the
nonlinear measures of causal influence are presented in a test
framework.

Index Terms— regression, reproducing kernel Hilbert
space, Granger causality

1. INTRODUCTION

When looking for a flow of information between time series,
an elegant approach is to consider Granger causality between
the time series of interest. Granger causality relies on predic-
tion. A first signal causes a second signal if it helps in the
prediction of the second signal. Granger causality was de-
veloped essentially in the econometrics community after an
early idea of N. Wiener [21, 10]. In the last 10 to 15 years, an
increase of interest has been seen in neuroscience especially,
but also in climatology ([8, 15]).

The definitions widely accepted rely on conditional inde-
pendence. Let xt, yt, zt be three time series. The collection
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of the samples of a signal w up to time t is written wt. We
have the following definitions [10, 4].
Definition 1: Dynamical causality: y does not (dynamically)
cause x relatively to (x, y, z) if for all t ∈ Z,

P
(
xt

∣∣xt−1, yt−1, zt−1
)
= P

(
xt

∣∣xt−1, zt−1
)

Definition 2: Instantaneous coupling: y does not instanta-
neously cause x relatively to (x, y, z) if for all k ∈ Z,

P
(
xt

∣∣xt−1, yt, zt
)
= P

(
xt

∣∣xt−1, yt−1, zt
)

In these equalities, P (.|.) stands for the conditional probabil-
ity distribution (or p.d.f. when they exist).

Dynamical Granger causality states that y causes x if the
prediction of x from its past is improved when also consid-
ering the past of y. Moreover, dynamical causality is relative
to the observation ((x, y, z) in the definitions). Therefore, in
testing causality between x and y, taking into account the side
information z up to time t− 1 is fundamental.

Instantaneous coupling quantifies the inclusion of the
present of y when estimating the present of x from its past
and the past of y. Like dynamical causality, the notion is
relative to the whole observation. Note also in this case that
the side information is included up to the present time instant.
A discussion of the importance of the time horizon chosen
for the side information is proposed below.

Testing causality can be done using information theoretic
tools, and doing so reveals a very close link between Granger
causality and directed information theory [9, 18, 1, 16]. How-
ever, estimating information theoretic measures is rather dif-
ficult and requires large amount of data. An alternative to
information theoretic measures relies on reproducing kernel
Hilbert spaces (RKHS) based measures of conditional inde-
pendence [5].

Here, we use the prediction interpretation and explicitly
quantifies the advantage of considering one time series for the
prediction of another one. This approach is the original one,
and in the Gaussian linear case, it was completely formalized
by Geweke in the early 80’s.
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Geweke’s measures being linear conditional measures to
assess Granger causality, it has appeared natural to design
their nonlinear counterparts. Some attempts have been made
in this direction over the past, using parametric nonlinear
models (see [8] for example). In [14] a kernel based approach
was presented, much like the approach we are proposing here.
However, if Geweke’s measures are based on optimal linear
prediction, optimization of the kernel parameters is not made
in [14]. In [2], we proposed a Gaussian Process Regression
approach which led to causality measures inherently based
on nonlinear regression using kernels. It did not however deal
with the problem of instantaneous causality.

In this paper, we use regularized regression in RKHS in
order to perform a nonlinear functional prediction of the time
series. The regression is optimized for a given kernel form
using ten fold random cross-validation. When looking for a
possible causality from y to x, prediction of xt is performed
twice, doing it with its past only, and with the past of y as
well. An index of causality is then derived from the prediction
mean square error. The procedure is the same to define an
instantaneous causality index.

The paper is organized as follows. In the following sec-
tion, we briefly recall Geweke’s indexes of causality. The pre-
diction procedure is developed in section 3.1 and is applied in
3.2 to define the kernel version of Geweke’s measures. The
practical set-up, including cross-validation and testing pro-
cedures, is developed in section 4. Section 5 then provides
two illustrations. A chain of nonlinear systems shows the im-
portance of side information and of nonlinear processing. A
complete four dimensional example illustrates the whole in-
ference problem. We give some future directions in the con-
clusion.

2. GEWEKE’S MEASURES

We briefly recall Geweke’s measures, introducing his two
important papers [6, 7]. In the 1982 paper, the measures
of causality are evaluated between two time series (possi-
bly multivariate) whereas the 1984 paper introduces side
information in the measures. The 1982 framework is thus
included in the 1984 framework, and therefore not detailed
here. We recover it by suppressing side information. Fur-
thermore, for the sake of simplicity, we concentrate on the
causality between two univariate time series xt, yt when a
(possibly multivariate) third time series zt is considered as
side information. At time t, let xt−1 be the collection of the
past samples of signal x. Geweke’s measures rely on linear
prediction and are well interpreted in the model
{

xt = !x(xt−1) + !yx(yt−1) + !zx(zt−1) + εx,t
yt = !xy(xt−1) + !y(yt−1) + !zy(zt−1) + εy,t

(1)

where the !’s denote linear functionals. For example, !yx(yt−1) =∑
n≥1 hnyt−n for some {hn}. The residuals ε.,t are assumed

to be sequences of i.i.d. zero mean Gaussian random vari-
ables. These two sequences can be correlated. We suppose
that, if they are correlated, correlation is instantaneous. Oth-
erwises the linear functionals are modified to take the delay
into account.

When estimating xt linearly from xn, ym, zo, where in-
dices n,m, o are either t or t − 1, let σ2

∞(xt|xn, ym, zo) =
limt→+∞ σ2(xt|xn, ym, zo) be the asymptotic minimum
mean square error. The abuse of notation allows to keep track
of the horizon used in the prediction. Geweke’s indices mea-
sure the gain in predicting xt by incorporating other variables
than its past as regressors. These indices are:

Fy→x‖z = log
σ2
∞(xt|xt−1, zt−1)

σ2
∞(xt|xt−1, yt−1, zt−1)

(2)

Fx.y‖z = log
σ2
∞(xt|xt−1, yt−1, zt)

σ2
∞(xt|xt−1, yt, zt)

(3)

Fx→y‖z is defined in the same way, and it can be shown that
Fx.y‖z is symmetrical in x and y. Fy→x‖z measures the ad-
vantage of including the past of y when predicting x from its
past and the past of the side information. If there is no advan-
tage, the measure is zero, whereas if there is an advantage,
the measure is strictly positive. In this case, y is said to be a
prima facie cause of x, relatively to x, y, z.

3. KERNELIZED GEWEKE’S MEASURE

3.1. Prediction with kernels

Geweke searched for the best predictor in the class of lin-
ear functionals. Other approaches were derived in parametric
classes of nonlinear functionals ([18]). Here, we seek the best
predictor in an a priori infinite dimensional Hilbert space of
functions from the input space to R. The prediction of signal
x can be written generically as xt = f(wt−1) where, for the
application developed here, w may be either x alone, x and z
or x, y and z. We suppose that xt ∈ R and that wt−1 ∈ X,
where X is typically Rp. Here, p is linked to the memory
considered for predicition. Considering the M past samples,
p will be equal to M if w = x, equal to 2M if w = (x, z)
and to 3M if w = (x, y, z). Then we consider a symmetric
positive definite function k : X × X → R and the unique re-
producing kernel Hilbert space H of functions from X to R
associated to it [19, 20]. We now seek the best predictor in
this reproducing kernel Hilbert space, optimal in the MMSE
sense.

From a practical point of view, we have to learn the best
predictor from a set of data (xt, wt−1)i ∈ R × X where i =
1, . . . , N . The problem is then to solve

f! = argmin
f∈H

∑

i

|xt,i − f(wt−1
i )|2 + λ‖f‖2H (4)

where we have added the regularization term to avoid over-
fitting (λ‖.‖2H stands for the norm in H). This problem is



the problem of regression and its solution is well-known
[19]. The representer theorem implies that function f be-
longs to the finite dimensional subspace of H generated
by k(., wt−1

i ), i = 1, . . . , N , and therefore writes f(.) =
α'kwt−1(.) where α ∈ RN and kw(.) is an N dimensional
vector of functions with entries (kw(.))i := k(., wt−1

i ).
Problem (4) then reduces to an optimization problem over
α. Let Kw be the Gram matrix with entries (Kw)ij :=
k(wt−1

i , wt−1
j ), and let I stand for the identity matrix. Denote

as xt the N dimensional vector with entries (xt)i := xt,i.
Then the optimal parameter vector α! is given by

α! = (Kw + λI)−1xt (5)

and the optimal prediction based on an observation wt−1 can
be expressed as

x̂t = f!(wt−1) = kw(w
t−1)'(Kw + λI)−1xt (6)

We can evaluate the mean square prediction error by averag-
ing over T realizations by

σ2(xt|wt−1) =
1

T

T∑

j=1

|xt,j − f!(wt−1
j )|2 (7)

Note at this point that we have obtained the best predictor
in the RKHS generated by k for a particular value of λ. How-
ever and as usual, k depends on some parameters. For exam-
ple, if we consider the Gaussian kernel k(x, y) = exp(−‖x−
y‖2/β2), the solution is optimal for the fixed pair of param-
eters (β,λ). We do not guarantee that for another pair the
solution cannot be better. Therefore, we also have to opti-
mize with respect to these parameters in order to obtain the
best solution for the particular form of the objective and of
the kernel. This optimization would be seen as marginaliza-
tion in a Bayesian point of view. As known however, this
optimization cannot be done in closed form, and we do it us-
ing cross-validation. The whole procedure will be explained
in section 4.1. From now on, we suppose that the optimiza-
tion over these parameters has been done, and that we have
obtained the optimal predictor for a given form of the kernel
and the regularized least-square objective function.

3.2. Kernel Geweke measures

We use the results of the previous section to directly general-
ize Geweke’s linear measures of causality to the kernel frame-
work adopted here. The bivariate kernel Geweke’s measures
are defined as

Gy→x := log
σ2(xt|xt−1)

σ2(xt|xt−1, yt−1)
(8)

Gx.y := log
σ2(xt|xt−1, yt−1)

σ2(xt|xt−1, yt)
(9)

and there multivariate counterparts read

Gy→x‖z := log
σ2(xt|xt−1, zt−1)

σ2(xt|xt−1, yt−1, zt−1)
(10)

Gx.y‖z := log
σ2(xt|xt−1, yt−1, zt)

σ2(xt|xt−1, yt, zt)
(11)

Theoretically, these indexes are greater than or equal to zero,
strict positivity indicating causality. As in the linear case, dy-
namical causality assessed by strict positivity of Gy→x relies
on the improvement in the predicition of xt provided by the
past of yt. Likewise, Gx.y and Gx.y‖z measure instantaneous
coupling as the improvement provided by the present of yt in
the estimation of xt given its past and the past of yt.

Note the time horizon chosen for the side information in
the definition of the causality measures. For the dynamical
causality index Gy→x‖z , z is considered up to t − 1. If con-
sidered up to t, instantaneous coupling would come into play
and lead to erroneous conclusion regarding dynamical causal-
ity. In Gx.y‖z , the time horizon for side information is t. The
choice t − 1 is possible. However, the graph induced would
be an independence graph instead of a conditional indepen-
dence graph which is the usual framework adopted in graph-
ical modeling, especially for Markov properties of the graph.
For more details on this discussion, see [3].

4. DETAILS ON THE PRACTICAL SET-UP

4.1. Cross-validation

For the optimization of λ and of the kernel parameters, we
use a randomized 10-fold cross-validation procedure, as de-
scribed below.

Suppose we observe the three time series xt, yt, zt for
t = 1, . . . , nl and we want to calculate Gy→x‖z . We
choose a time horizon p, and we create the learning set
(xt,i, x

t−1
i , yt−1

i , zt−1
i ) for i = 1, . . . , nl−p, where xt,i = xi

and wt−1
i = (wi−1, . . . , wi−p) for w = x, y, z. The learn-

ing set is split into ten subsets of equal size in which every
element has been randomly picked from the original learning
set, once and only once. Each subset is used once for the
validation step, while the learning step is processed over the
remaining nine other subsets. This procedure is repeated ten
times so that every subset is used once and only once for val-
idation. The mean square error is obtained as the average of
the ten mean square errors calculated on every validation sub-
set. This is repeated over a grid in λ and in the parameters of
the kernel, and this allows to find the optimal parameters (the
grid search is implemented using five successive logarithmic
subdivisions of an initial set). We finally evaluate again the
mean square error of prediction on the whole learning set
with the optimal parameters.



4.2. Testing

As mentionned in [7], even in the linear Gaussian case, the
multivariate measures of causality have no explicitly known
distribution. Therefore, the evaluation of the errors and power
of the test associated to these measures is impossible from
a theoretical perspective. A numerical approach is needed.
Here, we use random permutations of some data to simulate
the null hypothesis of no causality.

For example in the test
{

H0 : Gy→x‖z = 0
H1 : Gy→x‖z > 0

(12)

we create artificially H0 by shuffling the data which are
supposed to be responsible for H1, i.e. in the example con-
sidered, we shuffle the vectors {yt−1

i }. Precisely, let π be
a random permutation of the first nl − p integers, we gen-
erate H0 by considering yt−1

π(i) instead of yt−1
i in the learn-

ing set. For nr random independent random permutations
we evaluate G0

y→x‖z . We can then estimate from this nr

experiments the probability of error of the first kind (or
false alarm probability) P (η) = Pr(Gy→x‖z > η

∣∣H0) by∑nr

n=1 1(G
0
y→x‖z(n) > η)/nr, 1(A) being the characteristic

function of the set A. This in particular allows to determine
the threshold η for which the error of the first kind is bounded
by say α. Note that for this we do not explicitly estimate the
probability but rather use the estimation of the cumulative
probability distribution function by sorting the nr numbers
G0

y→x‖z(n).

5. ILLUSTRATIONS

We provide two illustrations that we have already studied
from an information theory point of view [3]. The first one
highlights the joint necessity of nonlinear processing and
accounting for side information. The second illustration
provides a full analysis of a four dimensional example.

5.1. A chain

For this example, let εx,y,z,t be three independent zero mean,
unit variance white Gaussian noise, and consider the follow-
ing model






xt = axt−1 + εx,t
yt = byt−1 + dxyx2

t−1 + εy,t
zt = czt−1 + cyzyt−1 + εz,t

(13)

where a = 0.2, b = 0.5, c = 0.8, dxy = 0.8, cyz = 0.7. Note
the quadratic coupling from x to y. As seen in the defini-
tion, the chain x → y → z is a Markov chain, and therefore
we expect that x causes z relatively to (x, z), but x does not
cause z relatively to (x, y, z). We have generated nr = 500
realizations of the model, each on nl = 500 samples. On
each realization, we evaluate the bivariate index Gx→z and

the multivariate index Gx→z‖y . The calculation is performed
as described in the previous sections with p = 2. In this exam-
ple we have used the linear kernel k(x, y) = x'y (panel (a) in
figure 1) and the Gaussian kernel (panel (b)). Note that using
the linear kernel leads to the usual linear Geweke’s measures.

We display here the results in the form of histograms of
the G’s evaluated on 20 bins. The plots are depicted in fig-
ure (1). From panel (a) we conclude that the linear measures
predict non causality from x to z, and this relatively either
to (x, z) or to (x, y, z). This erroneous conclusion is due to
the quadratic term in the link from x to y. Using the Gaus-
sian kernel leads to the expected conclusion. In the bivariate
analysis, we conclude that x causes z since the histogram of
Gx→z is clearly centered to a strictly positive number with a
narrow support. Taking the side information y into account,
the measure dramatically decreases, and Gx→z‖y is now cen-
tered around zero with a very small dispersion. Therefore we
conclude from panel (b) that the existing causality from x to
z is mediated by y, as the model suggests.

Although the measures should be strictly positive, note
that some negative values are observed in practice. This is
due to estimation residuals.

5.2. A four-dimensional example

In this example, let εw,x,y,z,t be an i.i.d. sequence of zero
mean four dimensional Gaussian vectors, with covariance

Γε =





1 ρ1 0 ρ1ρ2
ρ1 1 0 ρ2
0 0 1 ρ3

ρ1ρ2 ρ2 ρ3 1



 (14)

where we set ρ1 = 0.66, ρ2 = 0.55 and ρ3 = 0.48. Now
consider the following model





wt = 0.2wt−1 + 0.3zt−1 − 0.2ex2
t−1 + εw,t

xt = 0.3xt−1 + 0.3z2t−1 + εx,t
yt = −0.8yt−1 + 0.8xt−1 − 0.5x2

t−1 + εy,t
zt = −0.4zt−1 + 0.2wt−1 + εz,t

(15)

The model may be synthesized by what is called a causality
graph [4]. This is a mixed graph, whose vertices represent
the signals, a directed edge from x to y represents dynami-
cal causality from x to y relatively to the four signals, and
an undirected edge between x to y represents instantaneous
coupling between x and y relatively to the four signals. The
graph and the associated adjacency matrices are depicted in
figure (2). Note that the undirected graph associated to in-
stantaneous coupling corresponds, according to def. 2, to the
conditional independence graph of the noise. The absence of
an edge in this graph corresponds to a zero in the precision
matrix (inverse of the covariance matrix) in the entry corre-
sponding to the signals tested.

We have generatednr = 500 realizations of the four times
series, each of length 660 samples. Learning was performed
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Fig. 1. Histograms of dynamical causality indexes x → z
in a chain of nonlinear systems x → y → z. (a) Linear
Geweke’s measure calculated using the approach developed
in the paper with the linear kernel. (b) Nonlinear Geweke’s
dynamical causality index calculated as described in the paper
using a Gaussian kernel.

for each realization using the Gaussian kernel. The time hori-
zon p considered here was chosen to be p = 3. Note that this
choice should be included in the parameter set, and should
be optimized during the cross-validation step. This will be
considered in future work. Each measure was calculated on
the original realization (denoted G...) and on the shuffled data
mimicking the null hypothesis (measure denoted as G0

... in
that case). We insist again on the fact that the only shuffled
variable is the variable possibly responsible of H1. For exam-
ple, in testing instantaneous coupling between x and y (rel-
atively to (w, x, y, z)), the deviation from H0 is due the the
present of y, and this series only is shuffled: in the estimation
of σ2(xt

∣∣xt−1, yt, yt−1, wt, zt), the only shuffled data are the
realizations of yt (the realizations of yt−1 are not shuffled!).

For each possible pair, we estimated the threshold to ob-
tain a familywise probability of false alarm of α = 10%.
Therefore to be sure to obtain this rate, we used the Bon-
ferronni correction, a very well-known and very conservative
correction [13]. Some better and less conservative correction
such as false discovery rate correction (FDR) could also be

x y

zw

Adjacency matrices 

x
y

w
w

z

zyx

x
y

w
w

z

zyx

directedundirected

Causality graph

Fig. 2. Causality graph of the second example developed in
the paper. Arrows stand for dynamical causality and lines
for instantaneous coupling. We represent also the adjacency
matrices associated to the two types of edges in the causality
graph.

implemented. Thus practically, the pairwise probability of
false alarm is set to α/12 for dynamical causality testing and
α/6 for instantaneous causality testing (because of symme-
try). Then, for each pair and each test we have a threshold,
and we can effectively test on the the original data. We can
then estimate the probability of deciding H1 from the nr real-
izations. We plot the results in figure (3) in the form of matri-
ces of these estimated probabilities. As illustrated in these fig-
ures, taking side information into account is necessary to infer
the correct graph. For example, in plot (a), the adjacency ma-
trix of the undirected graph inferred is erroneous. However,
the structure is recovered in plot (b), up to the false alarm
rate. The same conclusion holds for the dynamical causality
(see plots (c) and (d)). In (c), the probability of deciding H1

for the entries (w, x), (x, z), (y, w) and (z, y) largely exceeds
the false alarm probability and should lead to the assignment
of a directed edge although no such ink exists. Note that the
results are obtained on short length of signals (learning done
on 660 samples). This example was already considered in [3]
where the measures considered are based on directed infor-
mation theory. In these works, the results are comparable in
quality, but are obtained on 5 times longer sample size.

6. SOME FUTURE WORKS

As already mentioned, including the time horizon as a param-
eter to be optimized in the cross-validation step is definitely
one of the next tasks. Furthermore, we develop iterative ver-
sion of the approach, having in mind on-line applications and



(a) Instantaneous causality
without side information

(b) Instantaneous causality
with side information

(c) Dynamical causality
without side information

(c) Dynamical causality with
side information

Fig. 3. Causal inference in the 4 dimensional model pre-
sented in the text. The matrices represent the probability that
a causality measure exceeds the threshold defined to provide
a familywise false alarm probability of 10%. The null hy-
pothesis is created using random permutations of the variable
responsible for the alternative, allowing empirical evaluation
of the threshold.

nonstationary analysis. This is of utmost importance for e.g.
neuroscience or climatology applications.
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