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Abstract—A simple method to derive nonlinear discriminants is
to map the samples into a high-dimensional feature space using a
nonlinear function and then to perform a linear discriminant anal-
ysis in . Clearly, if is a very high, or even infinitely, dimen-
sional space, designing such a receiver may be a computationally
intractable problem. However, using Mercer kernels, this problem
can be solved without explicitly mapping the data to . Recently,
a powerful method of obtaining nonlinear kernel Fisher discrimi-
nants (KFDs) has been proposed, and very promising results were
reported when compared with the other state-of-the-art classifica-
tion techniques. In this paper, we present an extension of the KFD
method that is also based on Mercer kernels. Our approach, which
is called the nonlinear kernel second-order discriminant (KSOD),
consists of determining a nonlinear receiver via optimization of a
general form of second-order measures of performance. We also
propose a complexity control procedure in order to improve the
performance of these classifiers when few training data are avail-
able. Finally, simulations compare our approach with the KFD
method.

Index Terms—Kernel Fisher discriminant, learning machine,
second-order criteria, support vector machines.

I. INTRODUCTION

DATA-DRIVEN design of linear receivers of the form
consists of finding optimum

and in the sense of a preselected criterion, e.g., a
second-order criterion such as the Fisher criterion or the
generalized signal-to-noise ratio (SNR), from a training set

. Here, the ’s are training sam-
ples, and the ’s indicate either class or . Since linear
discriminant analysis is generally not complex enough for
most real-world data, it is important to deal with nonlinear
discriminant analysis methods. In recent years, a great interest
has been shown in kernel-based algorithms to develop a non-
linear generalization of linear receivers; see [1] and references
therein. Kernel-based classification algorithms were primarily
used in support vector machines (SVMs) [2], [3]. By mapping
the samples into a high-dimensional feature space and refor-
mulating the problem into dot product form in order to use
Mercer kernels, an effective solution for nonlinear discriminant
analysis has been obtained [4, ch. 5]. This exploits the notion
that performing a nonlinear data transformation into some
high-dimensional feature space increases the probability of
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having linearly separable classes in the transformed space.
In [5], a nonlinear classification technique based on Fisher
discriminants has been proposed. It also uses the Mercer kernel
trick and allows the efficient computation of linear Fisher
discriminants in feature space. Very promising results had been
reported using this approach, called the kernel Fisher discrimi-
nant method (KFD), when compared with other state of the art
classification techniques. In this paper, we present an extension
of the KFD method that also deals with nonlinear discriminant
analysis using kernel functions and second-order measures of
performance. It consists of determining a kernel-based receiver
via optimization of a general form of second-order measures of
performance.

The performance of a receiver depends on several factors such
as its structure, the number of training data, and the dimension of
the space they span [4, ch. 3]. A common way of training a clas-
sifier is to adjust its free parameters to minimize an empirical
risk, or training error, which can be estimated as the frequency
of errors on the training set. However, receivers that minimize
empirical risk do not necessarily minimize the generalization
error, i.e., the error over the full distribution of possible inputs
and their corresponding outputs. The key issue is to tune the
complexity of the classifier to the amount of training data in
order to get the best generalization performance [4, ch. 4]. One
technique to reach this tradeoff is to minimize a cost function
composed of two terms: the ordinary training error plus some
measure of the receiver complexity. Several schemes have been
proposed in statistical inference literature [4], [6]. Here, we pro-
pose a technique for controlling the complexity of KSOD re-
ceivers that consists of selectively pruning their components in
a dual space, which is reminiscent of the optimal brain damage
(OBD) method [7].

The paper is organized as follows. In Section II, we start
with a brief review of second-order criteria, showing how they
can be used for designing linear detectors from training data.
We present our nonlinear approach in Section III, and we use
kernel functions in order to obtain a very simple algorithm. In
Section IV, we propose a complexity control procedure for im-
proving classification performance. Finally, some concluding
remarks are presented in Section V.

II. SECOND-ORDER MEASURES OF QUALITY FOR

SIGNAL CLASSIFICATION

A. Definition

Let be an arbitrary measurable function.
Second-order measures of performance are
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defined in terms of first- and second-order moments of ,
namely

Var (1)

with . There have been many articles exploring, indi-
vidually, the relevancy of well-known second-order criteria such
as Fisher, mean-square error, and generalized SNR [8]. In [9],
the aim of the authors is to unify these results by showing that
there exists a broad class of second-order criteria that lead to
Bayes-optimal solutions for general nonlinear detectors design.

Here, we use such criteria for designing linear decision sta-
tistics . If -dimensional observation is normally dis-
tributed, is also normally distributed. Therefore, the error
in the projected one-dimensional (1-D) space is determined by

and . Even if is not normal, can be close to
normal for large since it is the summation of terms, and the
central limit theorem may come into effect [10, ch. 4]. Then,
second-order criteria appear as reasonable measures of separa-
bility in the projected space.

B. Designing Linear Discriminants Using Second-Order
Criteria

Linear classifiers are the simplest one as far as implementa-
tion is concerned and are directly related to many known tech-
niques such as correlations and Euclidean distances [10, ch. 4].
A well-known strategy for deriving linear detectors consists of
using Fisher criterion [8]. However, it is stated in [11, ch. 4]
that linear discriminants derived via maximization of Fisher cri-
terion can be arbitrarily inappropriate: There are distributions
where even though the two classes are linearly separable, the
Fisher linear discriminant has an error probability close to 1.
We will now show how a general form of second-order criteria
can be used to design optimum linear detectors.

The conditional expected values and variances of the statistic
are given by

(2)

Var (3)

where and are the conditional expected vectors and co-
variance matrices of . Let be any second-order criterion.
The optimal statistic is obtained by equating to zero the
partial derivatives of with respect to and :

(4)
The partial derivatives of and with respect to and
are given by

(5)

Then, (4) can be reformulated as

(6)

Substituting the second equation into the first leads to

(7)

Dividing both sides by and elimi-
nating any scale factor multiplying to and , we
finally obtain the optimum projection direction under which the
optimum value of any given second-order criteria is reached.
This satisfies the following relation [10, ch. 4], [12], [13]:

(8)

where the parameter depends on according to

(9)

Once the functional form of is selected, the optimum bias
can be obtained from the second equation in (6). Note that

if, and only if, and are of the same
sign. This means that varies in the same way with and ,
which is a desirable but nonmandatory requirement for design
criteria [14]. In addition to Fisher criterion

(10)
this leads to , and several well-known second-
order criteria such as the SNR and mean square error satisfy this
property.

Relation (8) shows that the optimum direction depends on
the criterion via a single parameter . Rather than ar-
bitrarily selecting , we suggest the use of a complementary
performance measure such as error probability to adjust . Let

denote the optimum, i.e., , where
with satisfying the linear system (8).

In the sense of the error probability, the structure obviously
performs better than or equal to receivers maximizing Fisher
criterion, SNR, or mean square error. We will now discuss the
problems that arise in implementing this scheme when the de-
signer does not know the distribution of the data.

C. Data-Driven Approach

In the previous section, we have assumed that the conditional
expected vectors and conditional covariance matrices of the ob-
servation are given. However, if only a set of samples

is available without any prior knowledge of
the density function , and must be estimated. The
error probability , here used as a complementary perfor-
mance measure to select via , cannot be computed either. A
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convenient approach consists of estimating by its discrete
approximation computed with the training examples

(11)

where if , and 0 otherwise. This strategy,
which is called the resubstitution method, results in an optimisti-
cally biased estimate because the same data are used for both de-
signing and testing the detector. In order to avoid this bias, one
can estimate on a separate set in order to assure inde-
pendence between design and test samples. A serious problem
concerning the applicability of this approach, which is called the
holdout method, is that an additional sample is rarely available
in practice. In such cases, there exist strategies that rely on the
training data only, e.g., the jacknife and the bootstrap methods
[19]; see also [11, ch. 8] and references therein.

Minimization of empirical risk uses extensive computation
because it is generally not unimodal. In addition, it is difficult
to optimize by standard techniques such as gradient descent be-
cause the gradients are zero almost everywhere [11, ch. 4]. How-
ever, the advantage of the formulation (8) is that there is only one
parameter to tune for both selecting a second-order
criterion and designing the detector. This makes the training
stage very simple to implement, particularly with the following
iterative procedure.

1) Estimate the conditional expected vectors and covari-
ance matrices of .

2) Set to zero.
3) While repeat

• Solve (8) to get the vector , and save the result as
.

• Find the threshold that minimizes an estimate of
the generalization error.

• Update , where is a selected
step.

4) Select the best detector characterized by ( , ).

As the parameter varies from 0 to 1, this algorithm only ex-
plores the subset of second-order criteria whose derivatives
with respect to and have the same sign; see (9). This de-
sirable but nonmandatory requirement for design criteria makes
the process much simpler than adjusting in . In the next sec-
tion, we will use the same approach to design nonlinear kernel-
based detection structures.

III. NONLINEAR DISCRIMINANT ANALYSIS

A simple method of obtaining a nonlinear discriminant is to
map the samples into a high-dimensional feature space using
a nonlinear function

and then to perform a linear discriminant analysis in with
the set . This reflects the notion that per-
forming a nonlinear data transformation into some specific high-

dimensional feature spaces increases the probability of having
linearly separable classes within the transformed space.

Clearly, if is a very high, or even infinitely, dimensional
space, deriving may be a computationally intractable
problem. However, by using the theory of reproducing kernels
[2], such a problem can be solved without explicitly mapping
the data to the feature space . Recently, a method of ob-
taining nonlinear kernel Fisher discriminant, called the KFD
method, has been proposed [5] and widely studied [15], [16]. A
closed-form solution to this problem has also been obtained in
[17]. Here, we propose an extension of the KFD approach called
nonlinear kernel second-order discriminant (KSOD) method,
that it is also based on Mercer kernels and second-order criteria.

A. Nonlinear Kernels

The idea of constructing KSODs comes from considering a
general expression for the inner product in Hilbert space [4, ch.
5]

(12)

where is called kernel. Let be any symmetric
function. According to the Hilbert–Schmidt Theory [18], it can
be expanded as

(13)

where and are eigenvalues and eigenfunctions given by

(14)

A sufficient condition to ensure that defines an inner
product in a feature space is that all the ’s in (13) are positive.
According to Mercer’s theorem, this condition is achieved if,
and only if

(15)

for all such that

(16)

An example of kernel satisfying Mercer’s theorem is the poly-
nomial kernel defined as

(17)

with , , and . The mapping associated with
this kernel can be easily determined from (13). As an example,
for and , we directly obtain

(18)

where . Using different Mercer kernels, one can
design learning machines with different types of nonlinear
decision surfaces in input space. Classical radial basis functions
(RBFs) have received significant attention, most commonly
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with a Gaussian of the form .
The exponential radial basis function (ERBF) given by

, which produces a piecewise
linear separating surface, is also a typical Mercer kernel. Other
examples may be found in [4, ch. 5].

B. KSOD Method

Let be any second-order criterion. From (8), it directly fol-
lows that the discriminant function oper-
ating in is optimum in the sense of if it satisfies

(19)

where and denote the conditional expected vectors and
covariance matrices of , respectively. They can be esti-
mated from training data as follows:

(20)

(21)

where is the number of samples from class in the training
set. Equation (19) may be difficult to solve when is a very
high-dimensional space. However, one can get around this by
using Mercer kernels. They satisfy

(22)

which is the inner product of the ’s in the feature space .
We will now show how this property can be used to solve the
problem (19) without explicitly mapping the data in the feature
space .

Following [5], must lie in the span of all training samples
in according to the theory of reproducing kernels. This means
that has a dual kernel representation and can be expressed
as

(23)

Here, denotes the matrix , and the ’s
are the dual parameters. Multiplying (19) by and using (23)
yields

(24)

with

(25)

and

(26)

Using (22), the by matrix can be reformulated as fol-
lows:1

(27)
In the above equation, is a by matrix whose components
are given by

(28)

for all , . is the identity matrix, and
is the matrix with all elements set to . Each component
of in (24) is defined as

(29)

From (23), the projection of any new sample onto is
finally given by the kernel expression

(30)

where the -dimensional vector has to be determined from
(24). Note that the functional form of does not need to be
known. It is implicity defined by the choice of the kernel func-
tion . Testing different kernel functions such as the polynomial
kernel, RBF, and ERBF, one can cover a wide class of nonlin-
earities and get a powerful nonlinear decision function in input
space.

C. Algorithm

With the aim of exploring the set of second-order criteria to
design kernel-based detection structures, one can use the itera-
tive procedure described below.

1) Given any Mercer kernel , compute the kernel matrices
and from (28).

2) Compute from (29).
3) Set to zero.
4) While repeat

• Compute from (27).
• Solve (24) to get the vector , and save the result as

.
• Find the threshold that minimizes an estimate of

the generalization error.2

• Update , where is a selected
step.

5) Select the best detector characterized by ( , ).
As the parameter varies from 0 to 1, this algorithm only ex-
plores second-order criteria whose derivatives with respect
to and have the same sign; see (9). This nonmandatory
requirement for design criteria makes the procedure much sim-
pler than adjusting in . Note that the numerical problems
caused by inverting the ill-conditioned matrix in (24) can be
avoided by using, e.g., Tikhonov regularization [27] or truncated

1Note that (27) includes data centering in feature space.
2See Section II-C for details and references on how to estimate the general-

ization error.
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Fig. 1. Separating surfaces in the input space obtained with KFD and KSOD
methods. The samples from the two classes are represented by crosses and
circles.

singular value decomposition [29, ch. 2 and 3]. The standard ap-
proach used in the KFD algorithm [5], [15], [17] is to replace

with , where controls the smoothness of the
solution. Here, is the identity matrix. As for the Tikhonov ap-
proach, it is not a trivial matter to choose an appropriate value
for the regularization parameter . Various algorithms are dis-
cussed in [29]. Cross-validation will be used in this paper.

We will now illustrate the algorithm described above with
a toy data set, which consists of two noise parabolic shapes
mirrored at the and axis, as shown in Fig. 1. At first, a
400-sample training set was generated and partitioned into two
200-sample competing classes and . These data were used
to design a KSOD receiver with the polynomial kernel of de-
gree 2, 60% of them being dedicated to the determination of
and 40% to the selection of and based on an estimate of
the generalization error over this subset. Fig. 2 gives this error
as a function of . It also indicates KSOD and KFD receivers,
which correspond, respectively, to and

. Fig. 1 shows their separating surfaces in the input
space. In this experiment, note that the regularization parameter

was set to based on results of several preliminary runs
using the same experimental setup as above.

D. Comparison to KFD

To compare KSOD and KFD approaches, nine experiments
were conducted as in [5] on artificial and real-world data from
the UCI, DELVE, and STATLOG benchmark repositories.3 The
iterative procedure described in Section III-C was carried out
with the RBF kernel function and . For each of the
nine problems, results were averaged over 40 runs, which were
conducted individually as follows. A 8500-sample set
was generated for each run. This set was randomly split into a
400-sample training set , a 100-sample holdout cross-val-
idation set , and a 8000-sample test set . Each model
( , ) was trained on , and its performance was evalu-
ated on . The model with the lowest estimated general-
ization error on was selected as the KSOD receiver ( ,

), whereas the KFD receiver was picked by directly setting

3The data were downloaded from http://www.first.gmd.de/~raetsch/.

Fig. 2. Selection of � based on an estimate of the generalization error. Here,
KSOD and KFD receivers are associated, respectively, with � = 0:3 and � �
P (X 2 C ) = 1=2.

TABLE I
COMPARISON OF KFD AND KSOD (BEST METHOD IN BOLDFACE)

. The generalization performance of
both receivers were estimated based on . The mean error
rates over the 40 runs presented in Table I show that the KSOD
method is more efficient than KFD in most cases. Note that
these performance levels are different from those reported in
[5]. However, the experimental setups are different, e.g., only
200 training data were used by Mika et al. To test for signif-
icant differences between these two approaches, we used the
Wilcoxon Rank Test. The probability values , given in Table I,
indicate if the differences between error scores are statistically
significant or not over the 40 runs: is close to 0 if the differ-
ences between the KSOD and the KFD results are statistically
significant; otherwise, is close to 1. One can observe that the
KFD is outperformed by the KSOD method on the Cancer, Thy-
roid, Solar, Diabetes, and the German data. This illustrates the
ability of our approach to provide a statistically significant in-
crease in performance of classifiers over the original Fisher al-
gorithm. The KSOD is marginally superior on the Titanic and
Heart data, and both competing approaches provide equivalent
solutions for the Waveform and Ringnorm data. Interestingly,
similar performances were observed with SVMs, as shown in
Table II. It would seem that classifiers obtained with KSOD,
KFD, and SVM algorithms in these cases are close to the op-
timum solution in the sense of classical detection theories.
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TABLE II
COMPARISON OF KSOD-OBD, SVM AND RVM (BEST METHOD IN BOLDFACE)

Fig. 3. Schematic illustration of the behavior of generalization error P and
empirical errorP during a typical training stage, as a function of the detector
complexity. Note that P , which is an estimate of P based on training data,
is also called training error.

IV. COMPLEXITY CONTROL OF KSOD

Achieving good generalization performance with a receiver
requires matching its complexity to the amount of available
training data [4, ch. 2]. As illustrated in Fig. 3, if the detector
is too complex, it is likely to learn the training data, but it will
probably not generalize properly. In contrast, if it is not com-
plex enough, it might not be able to extract all the discriminant
information available in the training set. This experimental evi-
dence, which is known as the curse of dimensionality, has been
studied theoretically by Vapnik and Chervonenkis [21]. In par-
ticular, these authors have formally defined the complexity of
a detector, which is called the dimension of Vapnik–Chervo-
nenkis, or VC-dimension. This parameter, hereafter denoted ,
can be used to compute a confidence interval for the error prob-
ability of any decision structure designed from training data.
The following inequality holds with a probability of :

(31)

where

(32)

Here, denotes a -sample training set, is the prob-
ability of error of the decision structure , and
represents an estimate of this probability based on .

The cardinality of the training set is generally fixed so that
one needs to carefully control in order to reach a low .

Several strategies such as structural risk minimization (SRM)
[21] and minimum description length (MDL) [6] have been pro-
posed to achieve this task. Note that for generalized linear de-
tectors, equals the number of free parameters [4, ch. 3]. The
generalization ability of these structures can then be controlled
directly by pruning some of their free parameters. A technique
proposed by LeCun et al., which is called optimal brain damage
(OBD), has been widely used to reduce the size of neural net-
works by selectively deleting weights. In order to adjust the
VC-dimension, and therefore improve the performance of the
classification structure given by (30), we will now propose an
efficient method for pruning components of the dual vector
provided by (24), which is reminiscent of the OBD method.

A. OBD Method Applied to KSOD Learning Algorithm

We define the best candidate for pruning as the component
of involving the smallest variations of the squared error
defined from (24) as

(33)

where and are given by (27) and (29), respectively. A
perturbation modifies the objective function by the quan-
tity

(34)

where denotes the component of . If satisfies (24),
i.e., , the first term in (34) is zero. To facilitate the
decision about the component , which will be set to zero,
the pruning process is performed on a basis of eigenvectors of

. On such a basis, the squared error function can be written
as

(35)

with and . The th column of the matrix
is the eigenvector corresponding to the eigenvalue

of . If , where satisfies (24), replacing
in (34) yields

(36)

Pruning the component of then increases by

(37)

since when is set to zero. Therefore, the
components of associated with the smallest variations of

given by (37) are good candidates for pruning. The pruning
process is continued as long as it improves performance, which
must be simultaneously estimated. Several measures of perfor-
mance are mentioned in the next subsection.

Executing the OBD-based method described above as a
computer program is time consuming if it must be repeated
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for each . We will show that, in fact, does not de-
pend on . Suppose and are symmetric non-negative
matrices. If , then there exists a nonsingular
matrix such that both and are diagonal.4

This result can be applied to and , which
represent the standard data-based estimates of the conditional
covariance matrices of the ’s. Indeed, the condition

means that the competing
classes and span the same space. If not, the detection
problem would be trivial. Then, there exists a matrix , in-

dependent of , such that and are both
diagonal. On the basis of the column vectors of , the matrix

is then transformed into a diagonal matrix with general
diagonal element . Let . Since satisfies
(24), we have if . From (37), it
directly follows that

(38)

if . This shows that the variations of do not de-
pend on since does not depend on . In addition, note from
(37) that if , which means that the corre-
sponding component can be directly set to zero.

B. Algorithm

The OBD pruning process can be implemented in two dif-
ferent but equivalent ways. The first one is to change coordi-
nates to a principal axis representation using , i.e., compute

and , then solve the learning (24) and prune the weights
corresponding to small increase given by (38). Un-

fortunately, this procedure must be repeated for each since it
involves a posterior modification of the structure of receivers.
This drawback can be overcome by directly adjusting the di-
mension of the feature space and thereby reducing the number
of necessary free weights . The following iterative proce-
dure implements this strategy.

1) Change data coordinates to a principal axis representa-
tion, i.e., compute and .

2) While measured performance improves, do the following.
• Prune the th component of data corresponding to

the smallest value , i.e., delete the th column
and row of and the th element of .

• Apply the KSOD procedure.

As indicated above, the pruning process continues as long
as estimated performance improves. Vapnik and Chervo-
nenkis have proposed the guaranteed risk as a criterion
[23]. It is defined as the upper bound of in (31), i.e.,

, where may be inter-
preted as a penalty for complexity. This approach is called
structural risk minimization. Provided that enough training data
is available, a simpler strategy is to stop pruning when the error
on a separate validation set reaches a minimum. Other ways
of predicting generalization performance include jacknife and
bootstrap procedures; see, for example, [24, ch. 9].

4A more general assertion is proved in [22, Th. 8.7.1].

Fig. 4. Solution of the two spirals classification problem. In (a), the
KSOD-OBD decision function (solid line) was obtained with only four
components of ~� out of a total of 194, whereas the SVM (dotted line) needed
194 support vectors. In (b), only two components of the vector ~� out of 194
were used to design the KSOD-OBD decision function (solid line).

Let us now concentrate on a computer simulation to illus-
trate the iterative procedure presented in this subsection. It is
concerned with the two-spirals problem [26], which is a toy
classification problem. The task is to discriminate between two
sets of 97 training points that lie on two distinct spirals in the

– plane. These spirals coil three times around the origin and
around one another. Fig. 4 proposes interesting results obtained
with an ERBF kernel having a width equal to 1. As shown in
Fig. 4(a), one can prune 190 components of out of a total of
194 without affecting the margins between the decision function
(solid line) and the training samples. Such a very economical
solution generally has a good generalization property. A sim-
ilar decision function was obtained (dotted line) with the SVM
method5 that selected 100% of the 194 training data as support
vectors. Pruning 192 out of a total of 194 components of leads
to a degraded classification function, as can be seen in Fig. 4(b).

5The Matlab code used to optimize SVM in this paper was downloaded from
http://www.isis.ecs.soton.ac.uk/resources/svminfo.
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C. Experimental Comparisons

Experiments were conducted on the nine benchmark prob-
lems considered in Section III, with the same experimental
setup. The OBD process was stopped when the error rate on the
holdout cross-validation set reached a minimum. Next,
the performance of these structures were estimated with the
test set . Comparing Tables I and II, it can be seen that the
OBD algorithm improves the performance of KSOD receivers.
In order to illustrate the competitiveness of OBD-based KSOD
detectors, they were compared to other state-of-the-art sparse
kernel machines: SVM and RVM [28].6 Obviously, all were
trained and tested strictly following the same experimental
conditions, in particular, by using the same training sets
to design detection structures and the same holdout cross-val-
idation sets to adjust parameters such as regularization
constants. Table II clearly shows that the KSOD-OBD method
is more efficient than SVM and RVM in most cases. This
result is confirmed by the Wilcoxon Rank Tests between
KSOD-OBD and SVM and between KSOD-OBD and RVM,
except for the Waveform and Ringnorm data. In these two cases,
it would seem that classifiers are close to the optimum solution
in the sense of classical detection theories since they were
obtained with training algorithms of different types. Let us
analyze now the sparsity of solutions. One of the most impor-
tant properties of SVMs is that solutions are generally sparse
[1]. However, as indicated in Table II between parentheses, the
median number of support vectors required by SVMs to solve
each benchmark problem was very large in comparison with
the median number of components selected by the OBD
method. Such very economical solutions generally have good
generalization performance. The RVM method required fewer
kernel functions in most cases. Unfortunately, the resulting
performances were generally unsatisfactory. Another disad-
vantage of RVMs is in the complexity of the training phase, as
it is necessary to repeatedly compute and invert the Hessian
matrix [28]. The problem of the ill-conditioned Hessian ma-
trix prevented us from training RVMs for the Cancer and the
Waveform data.

V. CONCLUSION

In this paper, we have proposed a method of obtaining kernel-
based decision structures. As in the well-known KFD approach,
it uses the Mercer trick to compute linear discriminants in fea-
ture space that correspond to powerful nonlinear decision func-
tions in input space. The training algorithm consists of opti-
mizing a general form of second-order criteria. One of its main
advantages lies in its simplicity: There is only one parameter
to tune for both exploring the whole family of second-order
criteria and designing the detector. It is well known in pattern
recognition that the generalization error of classifiers depends
on their learning capacity and the number of available training
data. The OBD-based procedure developed here is a powerful
tool for tuning the complexity of generalized linear receivers of

6The Matlab code used to design RVM in these experiments was downloaded
from http://www.research.microsoft.com/mlp/rvm.

various kinds and improving their performance. We have suc-
cessfully experimented OBD-based KSOD receivers on simu-
lated and real data. In particular, experiments on benchmark data
have shown the ability of our approach to design KSOD detec-
tors with improved generalization performance. This method-
ology may offer a helpful support for designing efficient classi-
fiers in many applications of current interest.
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