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INTRODUCTION
Let (X , Y ) be a pair of random variables taking

taking their respective values from R
d and {0, 1},

where X is the observation and Y indicate either
class C0 or C1. The purpose of detection is to de-
termine to which of two classes (Y = 0 or Y = 1) a
given observation X belongs. According to classical
statistical detection theories, comparing any strictly
monotonic function of the likelihood ratio L(X) with
a threshold value is the optimum test [13]. In prac-
tical applications, implementing such a test may be
impossible because of incomplete specification of
the conditional probability densities p(X|Y = 0) and
p(X|Y = 1), denoted by the standard notations p0(X)
and p1(X), respectively. Therefore we are often led
to consider alternative design criteria such as second-
order measures of quality. These criteria are easy to
use since they only depend on first and second-order
moments of the statistics S to be sought [6, 7]. A wide
variety of second-order measures of performance
have been proposed and several contributions have
been presented to prove their efficiency, e.g., [8] and
references therein.

When deriving a detector, we are often led to consider de-
sign criteria such as second-order measures of quality. The
aim of this paper is to provide a critical overview of these
criteria. We first consider the case of deriving unconstrained
detectors. We show that second-order criteria must satisfy
a non-trivial condition to yield Bayes-optimal receivers, to be
considered as relevant criteria for detector design. Next, we
address the case where constraints are imposed on the de-
tection structure, leading us to consider some set D of ad-
missible detectors. In these conditions we prove that even if
there exists a monotonic function of the likelihood ratio in D,
obtaining this statistic via the optimization of a second-order
criterion, relevant or not, is not guaranteed. Results are il-
lustrated by simulation examples. Finally, in order to derive
nonlinear discriminants via optimization of second-order cri-
teria, we propose a method based on the kernel trick used
in the implementation of the well-known support vector ma-
chine method. The new method is tested on a number of
real data sets.

Keywords: Maximum likelihood, Detection, Distance mea-
sures , Signal-to-noise ratio, nonlinear discriminants.

In particular, some of these criteria guarantee the
best solution in the Bayes sense since there optimiza-
tion leads to a monotonic function of the likelihood ra-
tio, as has been shown for well-known criteria such
as Fisher criterion, mean-square error and signal-to-
noise ratio.

The aim of this paper is to provide an overview
of the strengths and shortcomings of second-order
criteria. First, we consider the case of deriving un-
constrained detectors. We show that second-order
criteria must satisfy a non-trivial condition to provide
Bayes-optimal receivers, to be considered as relevant
second-order criteria for detector design. Next, we ad-
dress the case where constraints are imposed on the
structure of the detector, leading us to restrict our at-
tention to some setD of admissible detectors. In these
conditions, we prove that even if a monotonic function
of the likelihood ratio in D exists, obtaining this statistic
via the optimization of a relevant criterion is not guar-
anteed. Finally, an original method to derive nonlinear
discriminants via optimization of second-order criteria
is introduced. It uses the same kernel trick as the sup-
port vector machines (SVMs). It allows us to develop
a nonlinear generalization of linear receivers obtained



via the optimization of second-order criteria. Simula-
tion results are presented in order to compare the re-
sulting nonlinear method with that of SVMs.

CHARACTERIZATION OF RELEVANT SECOND-
ORDER CRITERIA

Background And Notations
Let S(X) : R

d −→ R be an arbitrary measurable
function and let g : R

d −→ {0, 1} be the decision func-
tion based on S(X):

g(X) =
{

1 if S(X) > b
0 otherwise,

(1)

which errs on X if g(X) �= Y . Classical statis-
tical theories such as Bayes, Neyman-Pearson and
minimax lead to the fundamental result that the op-
timum test consists of comparing the likelihood ratio
L(X) � p1(X)/p0(X) with a given threshold b in or-
der to make a decision [13]. The decision rule can
then be expressed as

g∗(X) =
{

1 if L(X) > b
0 otherwise.

(2)

Note that g is equivalent1 to the Bayes-optimal de-
tector g∗, which means that their receiver operating
characteristic (ROC) is the same, if S(X) = φ{L(X)},
where φ is any monotonic function. Since the imple-
mentation of (2) may be impossible in many practical
applications, we are often led to consider simpler pro-
cedures for designing (1). In particular, one can use
alternative design criteria such as second-order mea-
sures of performance. These criteria are defined in
terms of first and second-order moments of the statis-
tics S(X), namely

mi � E{S |Y = i}, σ2
i � Var{S |Y = i}, (3)

with i ∈ {0, 1}. There have been many contributions
to justify the use of individual second-order criteria,
including convergence with optimal detectors of clas-
sical detection theories (see, e.g., [8] and references
therein). Examples of these criteria are Fisher, mean-
square error and signal-to-noise ratio. In [7, pp. 141-
3], the objective of the author is to unify these results
stating that the use of any function Ψ(m0, m1, σ

2
0 , σ

2
1)

as a criterion for general non-linear detector design
leads to a Bayes-optimum detector. In fact, we show
in the next subsection that Ψ(m0, m1, σ

2
0 , σ

2
1) must sat-

isfy a non-trivial condition to guarantee Bayes-optimal
detectors for general nonlinear detector design, and

1Throughout this paper, two detectors are said to be equivalent if their
receiver operating characteristic are the same.

thus to be considered as a relevant second-order cri-
terion for detector design.

Relevant Second-Order Criteria
Let Ψ be any function of mi �

∫
S(X) pi(X) dX

and σ2
i �

∫
(S(X) −mi)2 pi(X) dX, where S(X) de-

notes any decision statistic. We first have to charac-
terize statistics S(X) which optimize Ψ. Operating on
Ψ with a variational calculus, we obtain

δΨ =
∂Ψ
∂m0

δm0 +
∂Ψ
∂m1

δm1 +
∂Ψ
∂σ2

0

δσ2
0 +

∂Ψ
∂σ2

1

δσ2
1 . (4)

Since δmi =
∫

δS(X) pi(X) dX and δσ2
i =

2
∫
(S(X) − mi) δS(X) pi(X) dX with i ∈ {0, 1}, we

obtain

δΨ =
∫ [

∂Ψ
∂m0

p0(X) +
∂Ψ
∂m1

p1(X)

+ 2 (S(X)−m0)
∂Ψ
∂σ2

0

p0(X)

+ 2 (S(X)−m1)
∂Ψ
∂σ2

1

p1(X)]δS(X) dX. (5)

In order to make δΨ = 0 regardless of δS(X), the
[·] term in the integrand must be equal to 0. Using
L(X) = p1(X)

p0(X) , we finally get the expression of the
statistic S(X) optimizing Ψ as a function of the likeli-
hood ratio

S(X) = −1
2

∂Ψ
∂m0

+ ∂Ψ
∂m1

L(X)
∂Ψ
∂σ2

0
+ ∂Ψ

∂σ2
1
L(X)

+
m0

∂Ψ
∂σ2

0
+ m1

∂Ψ
∂σ2

1
L(X)

∂Ψ
∂σ2

0
+ ∂Ψ

∂σ2
1
L(X)

(6)
The above statistic S(X) leads to a Bayes-optimal de-
tector if, and only if, it is a strictly monotonic function
of L(X). Evaluating the first order derivative of S(X)
with respect to L(X), we obtain

dS

dL
(X) =

(m1 −m0) ∂Ψ
∂σ2

0

∂Ψ
∂σ2

1
+ 1

2

(
∂Ψ
∂σ2

1

∂Ψ
∂m0
− ∂Ψ

∂σ2
0

∂Ψ
∂m1

)
(

∂Ψ
∂σ2

0
+ ∂Ψ

∂σ2
1
L(X)

)2

(7)
We thus note that S(X) defined by (6) is a strictly
monotonic function of L(X) if, and only if, the numer-
ator of (7) is not equal to 0. This result leads directly
to the following proposition [14].

Proposition 1. Ψ(m0, m1, σ
2
0 , σ

2
1) is a relevant second-

order criterion ΨR, i.e., it guarantees the best solution in
the Bayes sense, if and only if

(m1−m0)
∂Ψ
∂σ2

0

∂Ψ
∂σ2

1

+
1
2

(
∂Ψ
∂σ2

1

∂Ψ
∂m0

− ∂Ψ
∂σ2

0

∂Ψ
∂m1

)
�= 0.

(8)



Since it is very difficult, if not impossible, to find the
solutions of (8), the above property can only be used
to test the relevance of any criteria Ψ(m0, m1, σ

2
0 , σ

2
1).

However, note that (8) is a non-restrictive condition,
i.e., there exists a broad class of second-order criteria
that lead to Bayes-optimal detectors [1].

CONSTRAINED DETECTOR DESIGN USING
SECOND-ORDER CRITERIA

As shown the previous section, there exists a broad
class of second-order criteria that lead to a detection
statistic S(X) equivalent to the likelihood ratio L(X).
However, implementing S(X) remains an unsolved
problem since it depends on the probability densi-
ties p0(X) and p1(X) via L(X), which are unknown.
Therefore, we have to use the following strategy for
deriving receivers [5]:

1. selecting a class D of detection statistics;

2. choosing the statistic of D that optimizes a
given measure of performance, e.g., a relevant
second-order criterion.

Unfortunately, this approach does not necessarily pro-
vide a Bayes-optimal detector since it generally re-
quires the optimum statistic (6) to be a member of D.
We shall now discuss this drawback in the case where
D denotes the class of linear statistics.

Linear Detectors Design
Linear detectors are the simplest to use as far as

their implementation is concerned, and are directly re-
lated to many known techniques such as correlations
and Euclidean distances [7]. We shall now show how
second-order criteria can be used for designing linear
detectors, which are defined as follows:

g(X) =
{

1 if S(X) = W T X − b > 0
0 otherwise.

(9)

Here W denotes the direction onto which any n-
dimensional observation X is projected, and b is the
detector threshold. The conditional expected values
and variances of S(X) are given by

mi = E{S |Y = i} = W T Mi − b (10)

σ2
i = Var{S |Y = i} = W TΣiW , (11)

where Mi and Σi are the conditional expected vectors
and covariance matrices of X. Let Ψ be any second-
order criterion. The optimal statistic S(X) is given by
equating to zero the partial derivatives of Ψ with re-
spect to W and b. As shown in [7, pp. 133-4] and [12],
solving this linear system leads directly to the following
proposition.

Proposition 2. Let S(X) � W T X − b be any linear de-
cision statistic. The optimum projection vector W under
which the maximum value of any second-order criteria Ψ is
reached satisfies

W ρ = [ρΣ0 + (1 − ρ)Σ1]
−1 [M1 −M0], (12)

where Mi and Σi are the conditional expected vectors and
covariance matrices of X . The parameter ρ depends on the
criterion Ψ as follows:

ρ =
∂Ψ
∂σ2

0

∂Ψ
∂σ2

0
+ ∂Ψ

∂σ2
1

. (13)

The optimum projection direction Wρ depends on
Ψ through a single parameter ρ ∈ ] −∞, +∞[. In this
case, the latter can be chosen to optimize the perfor-
mance of the detector. Note that ρ ∈ [0, 1] if, and only
if, ∂Ψ/∂σ2

0 and ∂Ψ/∂σ2
1 are of the same sign (Property

1). This condition means that Ψ varies in the same way
with σ2

0 and σ2
1 , which is a desirable but non-mandatory

requirement for design criteria. Let us now concen-
trate on W−∞ and W +∞. They are both proportional
to [Σ0 −Σ1]−1[M1 −M0] since we have

W±∞ ∝ lim
ρ→±∞

1
ρ
[Σ0 −Σ1]−1[M1 −M0]. (14)

The projection directions W−∞ and W +∞ then lead
to equivalent detection structures (Property 2) since
the ROC depends only on the direction of W .

In the following, Proposition 2 and the above prop-
erties are illustrated through some classic detection
problems. As mentioned at the very beginning of this
section, we also show that (relevant) second-order cri-
teria does not guarantee an optimal detector in the
Bayes sense if we restrict the solution space to a spe-
cific class D of detectors. Here this drawback is illus-
trated through the following situations:

Scenario 1: the optimization of any second-order crite-
ria in D leads to a Bayes-optimal detector,

Scenario 2: certain second-order criteria exist which
provide Bayes-optimal receivers in D,

Scenario 3: there exists a Bayes-optimal detector in
D but it cannot be reached by optimizing any
second-order criteria,

where D denotes the class of linear detectors (9).
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Fig. 1. Evolution of the projection direction W ρ on the unit sphere as a function of ρ ∈ ] −∞, +∞[, in the case of three-
dimensional exponential distributions (λ01 = 5, λ11 = 2, λ02 = 3, λ12 = 2, λ03 = 2, λ13 = 3). The projection direction
associated with the Bayes-optimal detector is referred to as W ∗ in this figure.
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Fig. 2. Same as figure 1. Overhead view of the unit sphere, i.e., dimension 3 ≥ 0.
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Fig. 3. Same as figure 1. View from below of the unit sphere, i.e., dimension 3 ≤ 0.

Data set KFD SVM KSOD

Banana 10.60 10.43 (132) 10.59
Thyroid 0.39 0.33 (156) 0.25
B. cancer 8.14 7.10 (364) 6.70
Diabetes 17.79 17.68 (308) 17.39
German 21.36 21.06 (400) 20.96
Heart 4.44 4.52 (388) 4.41
Solar 32.42 32.73 (364) 31.61
Waveform 11.14 11.07 (400) 11.14
Ringnorm 1.53 1.52 (396) 1.53
Titanic 28.88 28.88 (400) 28.55

Table 1. Comparison of the mean error rates obtained with KFD, SVM and KSOD. This table also gives the number of
support vectors used by the SVM method.



Scenario 1: Case Of Normal Distributions With Equal
Covariances

When p0(X) and p1(X) are normal with expected
vectors M0 and M1 and covariance matrices Σ0 and
Σ1, it is well-known that the Bayes-optimal statistic is
given by:

S(X) =
1
2
(X −M0)T Σ−1

0 (X −M0)

− 1
2
(X −M1)T Σ−1

1 (X −M1). (15)

This equation shows that the decision boundary is a
quadratic form in X. When Σ0 = Σ1 = Σ, the bound-
ary becomes a linear function of X as

S(X) = (M1 −M0)T Σ−1X. (16)

Eq. (16) indicates that the direction onto which any
X is projected is given by W ∗ = Σ−1(M1 − M0).
Let us now determine the projection direction under
which the optimal value of any second-order criterion
is reached. Eq. (12) gives:

W ρ = Σ−1(M1 −M0). (17)

Comparing the projection directions W ∗ and W ρ, we
immediately conclude that they both correspond to
equivalent detection structures. This very simple ex-
ample shows that any second-order criterion, relevant
or not, can sometimes lead to a Bayes-optimal re-
ceiver. However, such a success is not always guar-
anteed as illustrated in the next subsection, even if it
exists a Bayes-equivalent receiver in D.

Scenarios 2 And 3: Case Of Exponential Distributions
Let us consider that the components Xj of X are

exponentially distributed and mutually independent.
Then we have:

pi(X) =
d∏

j=1

1
λij

exp
(
− 1

λij
Xj

)
u(Xj), i ∈ {0, 1},

(18)
with λij the parameter of the exponential distribution
of the random variable Xj , and u(.) the step function.
It can easily be shown that the linear function given
below is the Bayes-optimal detection statistic:

S(X) =
d∑

j=1

(
1

λ0j
− 1

λ1j

)
Xj . (19)

Then it is associated with the following Bayes-optimal
projection direction:

W ∗ =
(

λ11 − λ01

λ11λ01
, . . . ,

λ1j − λ0j

λ1jλ0j
, . . . ,

λ1d − λ0d

λ1dλ0d

)
.

(20)

The expected vector Mi and the covariance matrix Σi

of X, which is exponentially distributed according to
(18), are given by Mi = (λi1, . . . , λij , . . . , λid)T and
Σi = diag(λ2

i1, . . . , λ
2
ij , . . . , λ

2
id). Applying (12) to de-

termine the projection direction under which the opti-
mal value of any second-order criterion is reached, we
obtain:

W ρ = (
λ11 − λ01

λ2
11 − ρ(λ2

11 − λ2
01)

, . . . ,
λ1j − λ0j

λ2
1j − ρ(λ2

1j − λ2
0j)

,

. . . ,
λ1d − λ0d

λ2
1d − ρ(λ2

1d − λ2
0d)

). (21)

Comparing (20) and (21) shows that the collinearity of
W ∗ and W ρ depends on ρ. We shall now illustrate
Scenarios 2 and 3.

Consider the case of two-dimensional observa-
tions X with λ11 �= λ01 and λ12 �= λ02. Vectors W ∗

and W ρ are collinear if, and only if,

ρ =
λ02λ12λ

2
11 − λ01λ11λ

2
11

λ02λ12(λ2
11 − λ2

01)− λ01λ11(λ2
12 − λ2

02)
. (22)

This means that any second-order criterion Ψ guaran-
tees the best solution in the Bayes sense if, and only
if, it satisfies:

∂Ψ
∂σ2

0

∂Ψ
∂σ2

0
+ ∂Ψ

∂σ2
1

=
λ02λ12λ

2
11 − λ01λ11λ

2
11

λ02λ12(λ2
11 − λ2

01)− λ01λ11(λ2
12 − λ2

02)
,

(23)
an example of which is the generalized signal-to-noise
ratio Ψα:

Ψα(S) =
(m1 −m0)

2

(1− α)σ2
1 + ασ2

0

, (24)

the parameter α must then be equal to the second
term in (22). Here mi and σ2

i denote the conditional
expected values and variances of S. This illustrates
Scenario 2.

Consider now that X is a d-dimensional observa-
tion, with (d > 2). Except for very particular cases, we
notice that there is no ρ parameter which ensures the
collinearity of W ∗ and W ρ. This means that optimiza-
tion of second-order criteria, relevant or not, does not
necessarily lead to a Bayes-equivalent detector, even
if there is one that is a member of D. Figures 1, 2 and
3 illustrate this situation, called Scenario 3, for three-
dimensional observations X. The projection direction
W ρ is represented on the unit sphere as a function of
ρ ∈ ] − ∞, +∞[. One can observe the collinearity of
projection directions W−∞ and W +∞ (see Property
2). Finally, one can notice that there is no value ρ0



such that W ρ0 and W ∗ are collinear, which is one of
the weaknesses of second-order criteria.

NONLINEAR SECOND-ORDER DISCRIMINANT
In recent years a great interest has been shown

in kernel-based algorithms for developping a nonlin-
ear generalization of linear receivers, see [11] and
references therein. Kernel-based classification algo-
rithms were primarily used in Support Vector Ma-
chines (SVMs) [3, 4]. By mapping the samples
(Xi)i=1,...,n into a high dimensional feature space
and reformulating the problem into dot product form
in order to use Mercer kernels, an effective solu-
tion for nonlinear discriminant analysis has been ob-
tained [17, chapter 5]. This exploits the notion that ap-
plying a nonlinear data transformation to some high-
dimensional feature space increases the probability of
having linearly separable classes in the transformed
space. In [10], a nonlinear classification technique
based on Fisher discriminants has been proposed. It
also uses the Mercer kernel trick, and allows the effi-
cient computation of linear Fisher discriminants in fea-
ture space. Very promising results had been reported
using this approach, called the kernel Fisher discrim-
inant method (KFD), when compared with other state
of the art classification techniques. In this paper, we
present an extension of the KFD method that also
deals with nonlinear discriminant analysis using kernel
functions and second-order measures of performance.
This method is based on extending the expression (12)
to the nonlinear case by mapping the data by a nonlin-
ear transformation.

Formulation Of The Nonlinear Discriminant
Applying a nonlinear data transformation to some

specific high dimensional feature spaces increases the
probability of having linearly separable classes within
the transformed space [17, 11]. Linear discriminants
in the feature space are then equivalent to nonlinear
discriminants in the original space. More formally, by
mapping the samples {Xi}i=1,...,n using a nonlinear
function

Φ : R
d −→ F

X 	−→ Φ(X),

one can perform a linear discriminant analysis in F
with the set {(Φ(Xi), Yi)}i=1,...,n in order to obtain a
nonlinear discriminants in the original space.

Clearly, if F is a very high, or even infinitely, dimen-
sional space, deriving S(X) = (W )T Φ(X) − b may
be a computationally intractable problem. However,
by using the theory of reproducing kernels [3], such a
problem can be solved without explicitly mapping the
data to the feature space F .

Nonlinear kernel second-order discriminant
(KSOD) can be obtained by using (12) in the feature
space F . According to Proposition 1, the function
S(X) operating in F is optimum in the sense of any
given second-order criterion Ψ if it satisfies

[
ρΣΦ

0 + (1− ρ)ΣΦ
1

]
W = [MΦ

1 −MΦ
0 ], (25)

where MΦ
i and ΣΦ

i denote the conditional expected
vectors and covariance matrices of Φ(X), respec-
tively. These moments can be estimated as follows:

MΦ
i =

1
ni

∑
X∈Ci

Φ(X) (26)

ΣΦ
i =

1
ni

∑
X∈Ci

Φ(X)ΦT (X)− (MΦ
i ) (MΦ

i )T , (27)

where ni is the number of samples from class Ci in
the training set. When F is a very high-dimensional
space, (25) may be difficult to solve except if the Mer-
cer trick is used. From the theory of reproducing ker-
nels [15], we know that any solution W ∈ F must lie
in the span of all training samples in F . Therefore W
can be written as follows:

W =
n∑

i=1

α(i)Φ(Xi) = Qα (28)

where Q denotes the matrix [Φ(X1) · · ·Φ(Xn)], and
the α(i)’s are the dual parameters. Multiplying (25) by
QT and using (28) yields
[
ρQTΣΦ

0 Q + (1− ρ)QTΣΦ
1 Q

]
α = QT [MΦ

1 −MΦ
0 ].
(29)

Let k be any kernel that satisfies the Mercer condi-
tion [17, 11]. Then we have

k(Xi, Xj) = Φ(X i)T Φ(Xj), (30)

which means that k(Xi, Xj) corresponds to the inner
product of Xi and Xj in F .

By using a kernel which verifies (30), the expres-
sion (29) can be reformulated as

Pρ α = M , (31)

where α has to be determined and Pρ is a n by n
matrix which is given by

Pρ =
[

ρ

n0
K0(I− 1n0)K

T
0 +

1− ρ

n1
K1(I− 1n1)K

T
1

]
.

(32)
In the above expression, Ki is a n by ni matrix with
elements

Ki(p, q) = k(Xp, Xq), (33)



for all Xp ∈ (C0 ∪ C1) and Xq ∈ Ci. I is the identity
matrix and 1ni is the matrix with all elements set to 1

ni
.

The components of M in (31) are defined as

M(j) =
1
n1

∑
X∈C1

k(X, Xj)− 1
n0

∑
X∈C0

k(X, Xj). (34)

To determine the projection of any new sample X onto
W , we have to calculate the n-dimensional vector α
from (31). Eq. (28) yields:

Φ(X)T W =
n∑

i=1

α(i) k(X i, X). (35)

Finally one can use different strategies to determine
the bias b, as shown in [10]. We can summarize
our work in the algorithm described below to deter-
mine a minimum error rate detector from a class of
kernel-based decision structures that are optimum in
the sense of second-order criteria.

1. Given any Mercer kernel k, compute the kernel
matrices K0 and K1 from (33).

2. Compute M from (34).

3. Set ρ to zero.

4. While (ρ ≤ 1) repeat

• Compute Pρ from (32).

• Solve (31) to get the vector α, and retain
the result as αρ.

• Find the threshold bρ which minimizes, e.g.,
an estimate of the generalization error.2

• Update ρ: ρ ← ρ + Δρ, where Δρ is a se-
lected step.

5. Select the best detector characterized by
(αρ, bρ).

From equation (13), one can see that the param-
eter ρ varies from 0 to 1 if the derivatives of the cor-
responding second-order criteria Ψ with respect to σ2

0

and σ2
1 have the same sign. This desirable but non-

mandatory requirement for design criteria makes the
process much simpler than adjusting ρ in R.

The method presented above is called kernel
second-order discriminant since it leads to the op-
timum nonlinear receiver in the sense of the best
second-order criterion without setting it up. Obviously,
classifiers obtained with KSOD perform better than or

2See, e.g., [10] for other criteria and strategies.

equal to those resulting from the KFD method devel-
oped by Mika et al. in [10].

Experimentations
To compare our method to KFD and SVM,

10 experiments were conducted on artifi-
cial and real world data downloaded from
http://www.first.gmd.de/˜raetsch. For
each of the 10 problems, Table 1 shows the average
test error over 40 runs on 400 training samples and
8000 test samples chosen arbitrarily from a mixture
of the available data sets. The kernel function was
selected as the RBF having a width equal to 1 [17].
Note that the numerical problems created by inverting
the ill-conditioned matrix P in (31) can be avoided by
adding a regularization term. It can be chosen as a
multiple of the identity matrix [10, 11, 17], i.e., replace
Pρ by the matrix Pρ + ηI with η > 0. The results pre-
sented in Table 1 clearly show that the KSOD method
can often perform favourably compared with the other
state of the art detection techniques. However, note
that for the KSOD method, all the training data should
be used to test a new sample. This is not the case for
the SVM method which uses only the training samples
called support vectors [17]. Hence, the testing time for
the KSOD method is in general higher than that of the
SVMs. Table 1 gives the number of support vectors
used by the SVM method.

CONCLUSION
The theoretical results reported in this paper are

concerned with the virtues and vices of second-order
criteria used for detector design. Firstly, we have given
a necessary and sufficient condition for these mea-
sures of performance to guarantee the best solution
in the Bayes sense when deriving unconstrained de-
tectors. Secondly we have considered the case where
constraints are imposed on the structure of detectors,
leading us to restrict our attention to a class D of ad-
missible detectors. We have shown that any second-
order criterion, relevant or not, can sometimes lead to
a Bayes-optimal receiver. However, such a success
is far from assured in the majority of cases, even if a
Bayes-equivalent detector in D exists.

Finally, we have proposed a nonlinear classification
technique based on second-order criteria. It uses the
Mercer kernel trick, and allows for the efficient com-
putation of linear second-order discriminants in fea-
ture space. The results obtained suggest that the
method presented in this paper often performs better
than SVM and KFD. However, one should note that the
testing time for this method is in general higher than
that of the SVMs since it uses all the training sam-
ples in the test phase. Future works will be dedicated
to control the complexity of the resulting discriminant



in order to increment the generalization performances
and to reduce the testing time [11, 16, 9].
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NOTATIONS
All vectors and matrices are in bold
D class of functions or detectors
Ci class i
X input sample
X(i) the component number i of X
Yi target value for class i
d dimensionality
n number of training samples
F high dimensional feature space
pi(X) conditional probability density of class i
S(.) mesurable function
g(.) decision function
L(.) likelihood ratio
Ψ second order criterion
mi expected value with respect to class i
σi variance with respect to class i
W d-dimensional vector
α n dimensional dual vector
α(i) the component number i of α
k(., .) Mercer kernel
Φ nonlinear function
M i conditional expected vector of class i
MΦ

i conditional expected vector of class i in feature space
Σi conditional covariance matrix of class i

ΣΦ
i conditional covariance matrix of class i in feature space

ROC Receiver Operating Characteristic
KFD Kernel Fisher Detectors
SVM Support Vector Machine
KSOD Kernel Second Order Detectors


