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ABSTRACT

Support vector machines (SVMs) are the most well known non-
linear classifiers based on the Mercer kernel trick. They generally
leads to very sparse solutions that ensure good generalization per-
formance. Recently Mika et al. have proposed a new nonlinear
technique based on the kernel trick and the Fisher criterion: the
nonlinear kernel Fisher discriminant (KFD). Experiments show
that KFD is competitive to the SVM classifiers. Nevertheless, it
can be shown that there exists distributions such that even though
the two classes are linearly separable, the Fisher linear discrim-
inant has an error probability close to 1. In this paper, we pro-
pose an alternative strategy based on Mercer kernels that consists
in picking the optimum nonlinear receiver in the sense of the best
second-order criterion. We also present a strategy for controlling
the complexity of the resulting classifier. Finally we compare this
new method with SVM and KFD.

1. INTRODUCTION

In the last few years there have been very significant developments
in classification methods based on kernels. Support Vector Ma-
chines (SVMs) were introduced and first applied as alternatives to
multi-layer neural networks [17]. The high generalization ability
provided by these learning machines has inspired recent works in
discriminant analysis as well as the fundamental theory of model
complexity and generalization. SVMs consist in mapping the data
into a high dimensional space F where the two classes of data
are more readily separable, and maximizing the margin [16, 17].
Recently, a powerful method of obtaining nonlinear kernel Fisher
discriminants (KFD) has been proposed, and very promising re-
sults were reported when compared with the other state of the art
classification techniques [10]. Nevertheless, it can be shown that
there exists distributions such that even though the two classes are
linearly separable, the Fisher linear discriminant has an error prob-
ability close to 1 [4]. In this paper, we present an extension of the
KFD method that is also based on Mercer kernels. Our approach,
called nonlinear kernel second-order discriminant (KSOD), con-
sists in determining the optimum nonlinear receiver in the sense
of the best second-order criterion [5, 6, 13]. In order to obtain a
sparse solution, we also propose a strategy to control the complex-
ity of the resulting classifier.

The present paper starts with a brief description of SVMs for
binary classification. Next we present our nonlinear approach,

which is based on the kernel trick for obtaining a simple, compu-
tationally inexpensive algorithm. We also propose a procedure for
controlling the complexity of receivers and then improving their
generalization performance. Finally, experiments using artificial
and real world data are performed in order to make comparisons
between our approach, KFD and SVM.

2. SUPPORT VECTOR MACHINES

We consider the binary classification problem with d-dimensional
patterns {xi}i=1,...,n having labels yi = ±1 that indicate either
class C0 or C1. The discriminant function approach uses a real-
valued function f(x), the sign of which determines the class label
prediction. SVMs implement complex discriminant functions of
the form

f(x) = w
T
φ(x) + b, (1)

by using a nonlinear function φ to map data into a high dimen-
sional (and possibly infinite dimensional) feature space F . The
separating hyperplane (w, b) is found by maximizing the distance
between itself and the closest points in the training set, called sup-
port vectors. Using a linearly separable training set, w and b are
solutions of the quadratic programming problem [3, 17]

min
w,b

(

1

2
‖w‖2

)

, (2)

subject to the constraints yi(w
T φ(xi) + b) ≥ 1, ∀i. When the

training data cannot be separated linearly in F , a more general
setting can be used to allow misclassified points. This gives rise to
a slightly different optimization problem [3, 17]

min
w,b,ξ

(

1

2
‖w‖2 + c

n
∑

i=1

ξi

)

, (3)

subject to yi(w
T φ(xi) + b) ≥ 1 − ξi and ξi ≥ 0, ∀i. The sum

of slack-variables ξi is related to the number of misclassification
errors, and the positive real constant c is a tuning parameter in the
algorithm. Let κ be any kernel that satisfies the Mercer condition.
Then we have

κ(xi, xj) = Φ(xi)
T Φ(xj), (4)

which means that κ(xi, xj) corresponds to the inner product of
xi and xj in F . It can be shown that the optimum discriminant



function (1) in the sense of the quadratic programming problem (3)
can be rewritten as

f∗(x) =

n
∑

i

υ∗(i) yi κ(x, xi) + b∗. (5)

Here the υ∗(i)’s are components of a dual vector υ∗ which maxi-
mizes the following expression

δ(υ) =

n
∑

i=1

υ(i) −
1

2

n
∑

i,j=1

υ(i)υ(j) yi yj κ(xi, xj), (6)

subject to the constraints

n
∑

i=1

υ(i) yi = 0, 0 ≤ υ(i) ≤ c. (7)

Note that this dual problem is identical to the one obtained in the
separable case (2) except for the upper bound c of the Lagrange
multipliers υ∗(i). Every pattern xi such that 0 < υ∗(i) < c
is called support vector. One of the most important property of
SVM is that the solution is sparse in υ∗, i.e., the υ∗(i)’s associ-
ated with patterns that are outside the margin area are zero. SVMs
would hardly be practical for large data sets without this charac-
teristic [17].

3. SECOND-ORDER DISCRIMINANTS

Kernel Fisher discriminant (KFD) is a nonlinear generalization of
Fisher discriminant that is based on Mercer kernels [10], in anal-
ogy to SVMs. On a large number of problems, KFD has shown
classification accuracies on a par with SVMs. Nevertheless, it is
stated in [4] that there are distributions such that even though the
two classes are linearly separable, the Fisher linear discriminant
has an error probability close to 1. In this section, we show how
designing optimum linear receivers in the sense of the best second-
order criterion, given any binary classification problem. Next, this
approach is generalized to nonlinear kernel discriminant functions
using the Mercer trick. Finally, performance of such receivers
are compared with KFDs and SVMs on a large number of bench-
marks.

3.1. Linear second-order discriminant

Let f(x) = wT x+ b be an arbitrary linear discriminant function.
If the d-dimensional random vector X is normally distributed,
f(X) is also normally distributed. Therefore, the error in the pro-
jected 1-dimensional space is determined by the first and second-
order moments of f(X)

ηi = E{f(X) |X ∈ Ci} = w
T
mi + b (8)

σ2

i = Var{f(X) |X ∈ Ci} = w
T Σi w, (9)

where mi and Σi are the conditional expected vectors and covari-
ance matrices of X. Even if X is not normal, f(X) can be close
to normal for large d since it is the summation of d terms and the
central limit theorem may come into effect [5]. Then second-order
criteria Ψ(η0, η1, σ

2

0 , σ2

1) appear as reasonable measures of sep-
arability in the projected space. In addition, it has been shown
in [13] that there exists a broad class of second-order criteria that

guaranty the best receiver in the Bayes sense for general nonlinear
detector design.

Let Ψ be any second-order criterion. The optimal statistic
f(X) is obtained by equating to zero the partial derivatives of Ψ
with respect to w and b:






∂Ψ

∂w
= ∂Ψ

∂σ2

0

∂σ2

0

∂w
+ ∂Ψ

∂σ2

1

∂σ2

1

∂w
+ ∂Ψ

∂η0

∂η0

∂w
+ ∂Ψ

∂η1

∂η1

∂w
= 0

∂Ψ

∂b
= ∂Ψ

∂σ2

0

∂σ2

0

∂b
+ ∂Ψ

∂σ2

1

∂σ2

1

∂b
+ ∂Ψ

∂η0

∂η0

∂b
+ ∂Ψ

∂η1

∂η1

∂b
= 0.

Solving this system with

∂σ2

i

∂w
= 2 Σi w

∂ηi

∂w
= mi

∂σ2

i

∂b
= 0

∂ηi

∂b
= 1 (10)

leads directly to the following result [5, 12].

Proposition 1. Let f(x) , wT x+b be any linear decision statis-
tic. The optimum projection vector w under which the maximum
value of any given second-order criterion Ψ is reached satisfies

[ρΣ0 + (1 − ρ)Σ1] wρ = [m1 − m0], (11)

where mi and Σi are the conditional expected vectors and covari-
ance matrices of X . The parameter ρ depends on the criterion Ψ
according to

ρ =

∂Ψ

∂σ2

0

∂Ψ

∂σ2

0

+ ∂Ψ

∂σ2

1

. (12)

Hence, the optimum projection direction wρ given by (11) de-
pends on Ψ via a single parameter ρ ∈ ]−∞, +∞[, which can be
adjusted to pick the receiver f(x) that has the best performance.
This approach thus leads to the optimum receiver in the sense of
the best second-order criterion Ψ, without setting it up. Note that
ρ ∈ [0, 1] if, and only if, ∂Ψ/∂σ2

0 and ∂Ψ/∂σ2

1 are of the same
sign. This condition means that Ψ varies in the same way with
σ2

0 and σ2

1 , which is a desirable but non-mandatory requirement
for design criteria [1]. This interval contains several well known
second-order criteria such as Fisher criterion, generalized signal-
to-noise ratio and mean square error.

3.2. Nonlinear second-order discriminant

Nonlinear kernel second-order discriminant (KSOD) can be ob-
tained by using (11) in the feature space F . According to Propo-
sition 1, the function f(x) = wT Φ(x) + b operating in F is
optimum in the sense of any given second-order criterion Ψ if it
satisfies

[

ρΣΦ

0 + (1 − ρ)ΣΦ

1

]

w = [mΦ

1 − m
Φ

0 ], (13)

where mΦ

i and ΣΦ

i denote the conditional expected vectors and
covariance matrices of Φ(X), respectively. Using training data,
these moments can be estimated as follows:

m
Φ

i =
1

ni

∑

x∈Ci

Φ(x) (14)

ΣΦ

i =
1

ni

∑

x∈Ci

Φ(x) ΦT (x) − (mΦ

i ) (mΦ

i )T , (15)

where ni is the number of samples from class Ci in the training set.
When F is a very high-dimensional space, (13) may be difficult



to solve except if the Mercer trick is used. From the theory of
reproducing kernels [15], we know that any solution w ∈ F must
lie in the span of all training samples in F . Therefore w can be
written as follows:

w =

n
∑

i=1

α(i) Φ(xi) = Qα (16)

where Q denotes the matrix [Φ(x1) · · ·Φ(xn)], and the α(i)’s are
the dual parameters. Multiplying (13) by QT and using (16) yields
[

ρQ
T ΣΦ

0 Q + (1 − ρ)QT ΣΦ

1 Q
]

α = Q
T [mΦ

1 − m
Φ

0 ]. (17)

By using a kernel which verifies (4), this expression can be refor-
mulated as

Nρ α = m, (18)

where α has to be determined and Nρ is a n by n matrix which is
given by

Nρ =

[

ρ

n0

K0(I − 1n0
)KT

0 +
1 − ρ

n1

K1(I − 1n1
)KT

1

]

. (19)

In the above expression, Ki is a n by ni matrix with elements

Ki(p, q) = κ(xp, xq), (20)

for all xp ∈ (C0 ∪ C1) and xq ∈ Ci. I is the identity matrix and
1ni

is the matrix with all elements set to 1

ni

. The components of
m in (18) are defined as

m(j) =
1

n1

∑

x∈C1

k(x, xj) −
1

n0

∑

x∈C0

k(x, xj). (21)

To determine the projection of any new sample x onto w, we have
to calculate the n-dimensional vector α from (18). Eq. (16) yields:

Φ(x)T
w =

n
∑

i=1

α(i) k(xi, x). (22)

Finally one can use different strategies to determine the bias b,
as shown in [10]. The method presented above is called kernel
second-order discriminant since it leads to the optimum nonlin-
ear receiver in the sense of the best second-order criterion without
setting it up. Obviously, classifiers obtained with KSOD perform
better than or equal to those resulting from the KFD method de-
veloped by Mika et al. in [10].

4. COMPLEXITY CONTROL OF KSOD

As the number of parameters in (22) increases, overfitting prob-
lems may arise with devastating effects on the generalization per-
formance [14]. A technique proposed by LeCun et al., called opti-
mal brain damage (OBD), has been widely used to reduce the size
of neural networks by selectively pruning weights. We present
here a similar strategy to be applied to the dual vector α provided
by (18).

The goal is to find the best components of the dual vector α for
pruning. It is judicious to set to zero those involving the smallest
variations of the squared error Eρ defined from (18) by

Eρ = ‖Nρ α − m‖2. (23)

To facilitate our decision about the parameters to be pruned, the
process is performed on a basis of normalized eigenvectors of Nρ,
where Eρ can be rewritten as

Eρ =
n
∑

i=1

[λρ(i) α̃(i) − m̃(i)]2, (24)

with α̃ = PT
ρ α and m̃ = PT

ρ m. The ith column of the matrix
Pρ is the eigenvector corresponding to the ith eigenvalue λρ(i) of
Nρ. A perturbation δα̃ modifies the objective function Eρ by the
quantity

δEρ =
∑

i

∂Eρ

∂α̃(i)
δα̃(i) +

1

2

∑

i

∂2Eρ

∂α̃(i)2
δα̃(i)2

+
1

2

∑

i6=j

∂2Eρ

∂α̃(i) ∂α̃(j)
δα̃(i) δα̃(j) + O(‖α̃‖2), (25)

with α̃(i) the ith component of α̃. If α̃ = α̃ρ , PT
ρ αρ, where

αρ satisfies (18) given ρ, replacing Eρ in (25) yields

δEρ =
n
∑

i=1

[λρ(i) δα̃(i)]2. (26)

Pruning the ith component of α̃ρ then increases Eρ by

δEρ(i) = [λρ(i) α̃ρ(i)]2 (27)

since δα̃(i) = α̃ρ(i) when α̃ρ(i) is set to zero. Therefore the
components of α̃ρ associated with the smallest variations of Eρ

given by (27) are good candidates for pruning.

We shall now show that δEρ(i) does not depend on ρ. This
avoids time consuming OBD-based procedures for each ρ. Let A
and B be symmetric non-negative matrices. Under weak condi-
tions on A and B, there exists a nonsingular matrix P such that
both PT AP and PT BP are diagonal [7]. We can apply this re-
sult to QT ΣΦ

0 Q and QT ΣΦ

1 Q and then conclude that the matrix
Pρ, whose columns are eigenvectors of Nρ, is independent of ρ.
It directly follows that m̃ = PT m does not depend on ρ. Since
αρ satisfies (18), we have λρ(i) α̃(i) = m̃(i) and

δEρ(i) = m̃(i)2 (28)

if λρ(i) 6= 0. This shows that the variations of Eρ do not de-
pend on ρ. In addition, note from relation (27) that δEρ(i) = 0
if λρ(i) = 0, which means that the associated component α̃ρ(i)
can be directly set to zero. These results then lead to an efficient
algorithm for controlling the complexity of KSOD receivers.

5. EXPERIMENTATIONS

The two spirals problem [8], which is a difficult benchmark clas-
sification problem, has been chosen as the first experiment to test
the efficiency of the OBD-based method applied to KSOD. Fig-
ure 1 shows the decision function of a SVM classifier (dotted line)
based on an exponential radial basis function (ERBF) kernel hav-
ing a width equal to 1. Note that 100% of the 194 training data
were selected as support vectors by the algorithm. A similar de-
cision function was obtained (solid line) with the KSOD method,
using only the 4 most significant components α̃(i) selected by the



Fig. 1. Comparison of KSOD (solid) with SVM (dotted). The
KSOD decision function was obtained with only 4 components of
α̃ out of a total of 194 whereas SVM needed 194 support vectors.

OBD procedure out of a total of 194. This experiment then illus-
trates the ability of our approach to provide sparse solutions.

To compare our method to KFD and SVM, 10 experiments
were conducted on artificial and real world data downloaded from
http://www.first.gmd.de/~raetsch. For each of the
10 problems, Table 1 shows the average test error over 40 runs on
400 training samples and 8000 test samples chosen arbitrarily from
a mixture of the available data sets. The kernel function was se-
lected as the RBF having a width equal to 1. The results presented
in Table 1 clearly show that the KSOD and the KSOD-OBD meth-
ods are more efficient in most cases than SVM and KFD. In addi-
tion the number of support vectors needed by the SVM method is
very large in comparison with the number of components α̃(i) se-
lected by the OBD method. Such very economical solutions gener-
ally have good generalization performance and produce short test-
ing times.

6. CONCLUSION

In this paper, KSOD and KSOD-OBD methods were presented.
These methods have been applied to an extensive number of artifi-
cial and real world data sets. The results obtained suggest that the
KSOD-OBD method performs often better than KFD and SVM.
Furthermore, very sparse descriptions of the classification func-
tions were obtained for most of the 10 experiments, which imply
a very short testing time for new data and best generalization per-
formance.
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